Cheng-Zhe Chai 1,2†Zhen Shen 1,2†Yan-Lei Zhang 1,2Hao-Qi Zhao 1,2,3[ ... ]Chun-Hua Dong 1,2,*
Author Affiliations
Abstract
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3 Current address: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Coherent conversion of microwave and optical photons can significantly expand the capabilities of information processing and communications systems. Here, we experimentally demonstrate the microwave-to-optical frequency conversion in a magneto-optical whispering gallery mode microcavity. By applying a magnetic field parallel to the microsphere equator, the intracavity optical field will be modulated when the magnon is excited by the microwave drive, leading to a microwave-to-optical conversion via the magnetic Stokes and anti-Stokes scattering processes. The observed single-sideband conversion phenomenon indicates a nontrivial optical photon–magnon interaction mechanism derived from the magnon that induced both the frequency shift and modulated coupling rate of optical modes. In addition, we demonstrate the single-sideband frequency conversion with an ultrawide tuning range up to 2.5 GHz, showing its great potential in microwave-to-optical conversion.
Photonics Research
2022, 10(3): 03000820
Author Affiliations
Abstract
1 Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China,Hefei 230026, China
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
An efficient method to mount a coupled silica microsphere and tapered fiber system is proposed and demonstrated experimentally. For the purpose of optomechanical studies, high-quality-factor optical (Qo ~ 108) and mechanical modes (Qm ~ 0.87 × 104<)sup>) are maintained after the mounting process. For the mounted microsphere, the coupling system is more stable and compact and, thus, is beneficial for future studies and applications based on optomechanical interactions. Especially, the packaged optomechanical system, which is tested in a vacuum chamber, paves the way toward quantum optomechanics research in cryostat.
Resonators Resonators Micro-optical devices Micro-optical devices Optomechanics Optomechanics 
Photonics Research
2015, 3(5): 05000243

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!